<u>Class IX Chapter 1 –</u> <u>Number Sustems Maths</u>

Exercise 1.1 Question

Is zero a rational number? Can you write it in the form $\frac{p}{q}$, where p and q are integers \neq 0?

and q

Answer:

Yes. Zero is a rational number as it can be represented as $\frac{0}{1}$ or $\frac{0}{2}$ or $\frac{0}{3}$ etc.

Question 2:

Find six rational numbers between 3 and 4.

Answer:

There are infinite rational numbers in between 3 and 4.

$$\frac{24}{8}$$
 and $\frac{32}{8}$ respectively.

3 and 4 can be represented as

Therefore, rational numbers between 3 and 4 are $\frac{25}{8}$, $\frac{26}{8}$, $\frac{27}{8}$, $\frac{28}{8}$, $\frac{29}{8}$, $\frac{30}{8}$

Question 3:

Find betwo	five een Ans	rational swer:	$\frac{3}{2}$ and $\frac{4}{2}$		numbers
There between	are	infinite	5 5	rational	numbers
$\frac{3}{3} = \frac{3 \times 6}{3}$	= 18		$\frac{3}{2}$ and $\frac{4}{2}$		
5 5×6	30		5 5		
$\frac{4}{-}$	_ 24		$\frac{3}{4}$ and $\frac{4}{4}$		
5 5×6	30		numbers between 5 ⁴⁴⁴ 5		

Therefore, rational are $\frac{19}{30}, \frac{20}{30}, \frac{21}{30}, \frac{22}{30}, \frac{23}{30}, \frac{23}{30}$ Question 4:

State whether the following statements are true or false. Give reasons for your answers.

- (i) Every natural number is a whole number.
- (ii) Every integer is a whole number.
- (iii) Every rational number is a whole number.

Answer:

- (i) True; since the collection of whole numbers contains all natural numbers.
- (ii) False; as integers may be negative but whole numbers are positive. For example: -3 is an integer but not a whole number.
- (iii) False; as rational numbers may be fractional but whole numbers may not be. For

example: $\frac{1}{5}$ is a rational number but not a whole number.

Exercise 1.2 Question 1:

State whether the following statements are true or false. Justify your answers.

- (i) Every irrational number is a real number.
- (ii) Every point on the number line is of the form \sqrt{m} , where m is a natural number.
- (iii) Every real number is an irrational number.

Answer:

- (i) True; since the collection of real numbers is made up of rational and irrational numbers.
- (ii) False; as negative numbers cannot be expressed as the square root of any other number.
- (iii) False; as real numbers include both rational and irrational numbers. Therefore, every real number cannot be an irrational number.

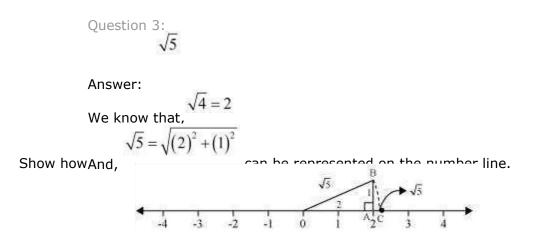
Question 2:

Are the square roots of all positive integers irrational? If not, give an example of the square root of a number that is a rational number.

Answer:

If numbers such as $\sqrt{4} = 2$, $\sqrt{9} = 3$ are considered,

Then here, 2 and 3 are rational numbers. Thus, the square roots of all positive integers are not irrational.



Mark a point 'A' representing 2 on number line. Now, construct AB of unit length perpendicular to OA. Then, taking O as centre and OB as radius, draw an arc intersecting number line at C.

C is representing $\sqrt{5}$.

has: (i) $\frac{36}{100}$ (ii) $\frac{1}{11}$ (iii) $4\frac{1}{8}$ $\frac{3}{13}$ (v) $\frac{2}{11}$ (vi) $\frac{329}{400}$ Answer: 36 = 0.36100 (i) Terminating = 0.090909..... = 0.09 1 11 (ii) Non-terminating repeating (iii) $4\frac{1}{8} = \frac{33}{8} = 4.125$ Terminating $\frac{3}{-}=0.230769230769....$ (iv) 13 = 0.230769Non-terminating repeating $\frac{2}{1} = 0.18181818...$ = 0.18(v) 11 Non-terminating repeating = 0.8225(vi) 400 Terminating = 0.142857Question 2: You know that 2 3 4 5 6 7,7,7,7,7 Exercise 1.3 Question 1:

Write the following in decimal form and say what kind of decimal expansion each % f(x) . Can you predict what the decimal expansion of

are, without actually doing the long division? If so, how?

[Hint: Study the remainders while finding the value of 7 carefully.] Answer:

Yes. It can be done as follows.	
$\frac{2}{7} = 2 \times \frac{1}{7} = 2 \times 0.\overline{142857} = 0.\overline{285714}$, where p and q are integers and q \neq 0.
$\frac{3}{7} = 3 \times \frac{1}{7} = 3 \times 0.\overline{142857} = 0.\overline{428571}$	10x = 6 + x
$\frac{4}{7} = 4 \times \frac{1}{7} = 4 \times 0.142857 = 0.571428$	$9x = 6$ $x = \frac{2}{3}$
$\frac{5}{7} = 5 \times \frac{1}{7} = 5 \times 0.\overline{142857} = 0.\overline{714285}$ $\frac{6}{7} = 6 \times \frac{1}{7} = 6 \times 0.\overline{142857} = 0.\overline{857142}$	(ii) $0.\overline{47} = 0.4777$ $= \frac{4}{10} + \frac{0.777}{10}$
Question 3:	$= \frac{1}{10} + \frac{1}{10}$ Let x = 0.777 10x = 7.777
Express the following in the form \overline{q} (i) $0.\overline{6}$ (ii) $0.4\overline{7}$ (iii) $0.\overline{001}$	$10x = 7 + x$ $x = \frac{7}{9}$
Answer: (i) $0.\overline{6} = 0.666$ Let x = 0.666	$\frac{4}{10} + \frac{0.777}{10} = \frac{4}{10} + \frac{7}{90}$ $= \frac{36+7}{90} = \frac{43}{90}$
10x = 6.666	(iii) $0.\overline{001} = 0.001001$ Let x = 0.001001
	1000x = 1.001001 1000x = 1 + x
999x = 1	

999x = 1

$$x = \frac{1}{999}$$

Question 4:

p

Express 0.99999...in the form q. Are you surprised by your answer? With your teacher and classmates discuss why the answer makes sense.

Answer:

Let x = 0.9999...

10x = 9.99999... 10x = 9 + x 9x = 9 x = 1

Question 5:

What can the maximum number of digits be in the repeating block of digits in the decimal expansion of $\frac{1}{17}$? Perform the division to check your answer.

1

Answer:

It can be observed that, $\frac{1}{17} = 0.\overline{0588235294117647}$

There are 16 digits in the repeating block of the decimal expansion of 17 .

Question 6:

Look at several examples of rational numbers in the form $\frac{p}{q}$ (q \neq 0), where p and q are integers with no common factors other than 1 and having terminating decimal representations (expansions). Can you guess what property q must satisfy?

Answer:

Terminating decimal expansion will occur when denominator q of rational number $\frac{p}{q}$ is either of 2, 4, 5, 8, 10, and so on...

 $\frac{9}{4} = 2.25$ $\frac{11}{8} = 1.375$ $\frac{27}{5} = 5.4$

It can be observed that terminating decimal may be obtained in the situation where prime factorisation of the denominator of the given fractions has the power of 2 only or 5 only or both.

Question 7:

Write three numbers whose decimal expansions are non-terminating non-recurring. Answer:

3 numbers whose decimal expansions are non-terminating non-recurring are as follows.

0.50500500050000500005...

0.7207200720007200007200000... 0.080080008000080000080...

Question

8:

Find three different irrational numbers between the rational numbers

and . Answer:

 $\frac{5}{7}$

$$\frac{5}{7} = 0.\overline{714285}$$
$$\frac{9}{11} = 0.\overline{81}$$

3 irrational numbers are as follows.

0.73073007300073000073...

0.7507500750007500075... 0.7907900790007900079...

Question

9:

Classify the following numbers as rational or irrational:

(i)
$$\sqrt{23}$$
 (ii) $\sqrt{225}$ (iii) 0.3796
(iv) 7.478478 (v) 1.101001000100001...
 $\sqrt{23} = 4.79583152331$...
(i)

As the decimal expansion of this number is non-terminating non-recurring, therefore, it

is an irrational number.

(ii)
$$\sqrt{225} = 15 = \frac{15}{1}$$

It is a rational number as it can be represented in q form.

(iii) 0.3796

As the decimal expansion of this number is terminating, therefore, it is a rational number.

p

(iv) 7.478478 ... = 7.478

As the decimal expansion of this number is non-terminating recurring, therefore, it is a rational number.

(v) 1.10100100010000 ...

As the decimal expansion of this number is non-terminating non-repeating, therefore, it is an irrational number.

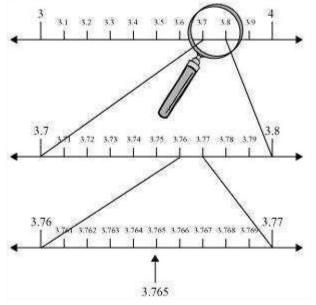
Exercise 1.4 Question

1:

Visualise 3.765 on the number line using successive magnification.

Answer:

3.765 can be visualised as in the following steps.



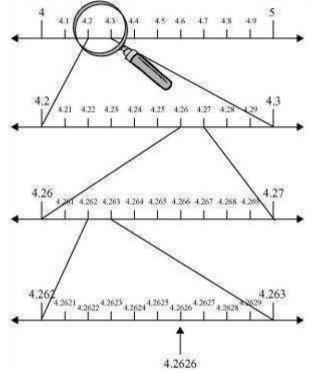
Question 2:

4.26 on the number line, up to 4 decimal places. Visualise

Answer:

4.26 = 4.2626...

4.2626 can be visualised as in the following steps.



Exercise 1.5 Question 1:

1Classify the following numbers as rational or irrational:

(i)
$$2-\sqrt{5}$$
 (ii) $(3+\sqrt{23})-\sqrt{23}$ (iii) $\frac{2\sqrt{7}}{7\sqrt{7}}$
(iv) $\frac{1}{\sqrt{2}}$ (v) 2π
Answer:
(i) $2-\sqrt{5} = 2 - 2.2360679...$
 $= -0.2360679...$

As the decimal expansion of this expression is non-terminating non-recurring, therefore, it is an irrational number.

form, therefore, it is a rational

(ii)
(iii)
As it can be represented in

$$\frac{2\sqrt{7}}{7\sqrt{7}} = \frac{2}{7}$$

(iii)
As it can be represented in
 $\frac{p}{q}$
rational number.
As it can be represented in
 $\frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2} = 0.7071067811...$

As the decimal expansion of this expression is non-terminating non-recurring,

therefore, it is an irrational number. (v) $2\pi = 2(3.1415...)$

= 6.2830 ...

As the decimal expansion of this expression is non-terminating non-recurring, therefore,

it is an irrational number.

Question 2:

Simplify each of the following expressions:

(i)
$$(3+\sqrt{3})(2+\sqrt{2})$$
 (ii) $(3+\sqrt{3})(3-\sqrt{3})$
(iii) $\frac{(\sqrt{5}+\sqrt{2})^2}{(iv)}$ (iv) $\overline{(\sqrt{5}-\sqrt{2})(\sqrt{5}+\sqrt{2})}$
Answer:
(i) $(3+\sqrt{3})(2+\sqrt{2})=3(2+\sqrt{2})+\sqrt{3}(2+\sqrt{2})$
 $=6+3\sqrt{2}+2\sqrt{3}+\sqrt{6}$
(i) $(3+\sqrt{3})(3-\sqrt{3})=(3)^2-(\sqrt{3})^2$
 $=9-3=6$
(ii) $\frac{(\sqrt{5}+\sqrt{2})^2=(\sqrt{5})^2+(\sqrt{2})^2+2(\sqrt{5})(\sqrt{2})}{(5+\sqrt{2})^2+2(\sqrt{5})(\sqrt{2})}$
 $=5+2+2\sqrt{10}=7+2\sqrt{10}$
(iv) $\frac{(\sqrt{5}-\sqrt{2})(\sqrt{5}+\sqrt{2})=(\sqrt{5})^2-(\sqrt{2})^2}{(\sqrt{2})^2}$
 $=5-2=3$
Question 3:

Recall, $\boldsymbol{\pi}$ is defined as the ratio of the circumference (say c) of a circle to its diameter

(say d). That is, $\pi = \frac{c}{d}$. This seems to contradict the fact that π is irrational. How will you resolve this contradiction?

Answer:

There is no contradiction. When we measure a length with scale or any other instrument, we only obtain an approximate rational value. We never obtain an exact value. For this reason, we may not realise that either c or d is irrational. Therefore,

the $\frac{c}{d}$ fraction is irrational. Hence, π is irrational. Question 4:

Represent on the number line.

Answer:

Mark a line segment OB = 9.3 on number line. Further, take BC of 1 unit. Find the midpoint D of OC and draw a semi-circle on OC while taking D as its centre. Draw a

(i)
$$\frac{1}{\sqrt{7}} \frac{1}{\sqrt{7} - \sqrt{6}}$$

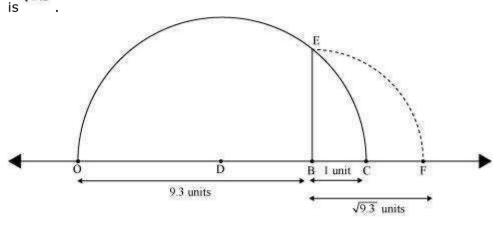
(ii) $\frac{1}{\sqrt{5} + \sqrt{2}} \frac{1}{\sqrt{7} - 2}$
(iii) $\frac{1}{\sqrt{5} + \sqrt{2}} \frac{1}{\sqrt{7} - 2}$

Answer:

$$\frac{1}{\sqrt{7}} = \frac{1 \times \sqrt{7}}{1 \times \sqrt{7}} = \frac{\sqrt{7}}{7}$$

(i) perpendicular to line OC passing through point B. Let it intersect the semi-circle at E.

Taking B as centre and BE as radius, draw an arc in tersecting number line at F. BF is $\sqrt{9.3}$.



Question 5:

Rationalise the denominators of the following:

$$\frac{1}{\sqrt{7} - \sqrt{6}} = \frac{1}{(\sqrt{7} + \sqrt{6})} \frac{\sqrt{7} + \sqrt{6}}{(\sqrt{7} - \sqrt{6})(\sqrt{7} + \sqrt{6})}$$
(ii)

$$= \frac{\sqrt{7} + \sqrt{6}}{(\sqrt{7})^{2} - (\sqrt{6})^{2}}$$

$$= \frac{\sqrt{7} + \sqrt{6}}{7 - 6} = \frac{\sqrt{7} + \sqrt{6}}{1} = \sqrt{7} + \sqrt{6}$$

$$\frac{1}{\sqrt{5} + \sqrt{2}} = \frac{1}{(\sqrt{5} - \sqrt{2})} \frac{\sqrt{5} - \sqrt{2}}{(\sqrt{5} - \sqrt{2})^{2}} = \frac{\sqrt{5} - \sqrt{2}}{5 - 2}$$
(iii)

$$= \frac{\sqrt{5} - \sqrt{2}}{(\sqrt{5})^{2} - (\sqrt{2})^{2}} = \frac{\sqrt{5} - \sqrt{2}}{5 - 2}$$

$$= \frac{\sqrt{5} - \sqrt{2}}{3}$$
(iv)

$$= \frac{\sqrt{7} + 2}{(\sqrt{7})^{2} - (2)^{2}}$$

$$= \frac{\sqrt{7} + 2}{7 - 4} = \frac{\sqrt{7} + 2}{3}$$

Exercise 1.6 Question 1:

Find:

(i)
$$64^{\frac{1}{2}}$$
 (ii) $32^{\frac{1}{5}}$ (iii) $125^{\frac{1}{3}}$

	(i) $9^{\frac{3}{2}} = (3^2)^{\frac{3}{2}}$	
Find: (i) $9^{\frac{3}{2}}$ (ii) $32^{\frac{2}{5}}$ (iii) $16^{\frac{3}{4}}$	$3^{2^{3}} = (3^{2^{3}})^{2^{3}}$ $= 3^{2^{3}} = 27$	$\left[\left(a^{m}\right)^{n}=a^{mn}\right]$
(iv) $125^{\frac{-1}{3}}$	(ii) $(32)^{\frac{2}{5}} = (2^5)^{\frac{2}{5}}$	
Answer: (i) $64^{\frac{1}{2}} = (2^{6})^{\frac{1}{2}}$	$=2^{5\times\frac{2}{5}}$ $=2^{2}=4$	$\left\lfloor \left(a^{m}\right)^{n}=a^{mn}\right\rfloor$
$=2^{6\times\frac{1}{2}}$ $=2^{3}=8$	$\left[\left(a^{m}\right)^{n}=a^{mn}\right]_{\left(16\right)^{\frac{3}{4}}=\left(2^{4}\right)^{\frac{3}{4}}}^{(11)}$	r
(ii) $32^{\frac{1}{5}} = (2^5)^{\frac{1}{5}}$	$=2^{4\times\frac{3}{4}}$ = 2 ³ = 8	$\left\lfloor \left(a^{m}\right)^{n}=a^{mn}\right\rfloor$
$= (2)^{5 \times \frac{1}{5}}$ = 2 ¹ = 2	$\left[\left(a^{m}\right)^{n} = a^{mn}\right]^{(iv)}_{(125)^{\frac{-1}{3}} = \frac{1}{(125)^{\frac{1}{3}}}}$	$\left[a^{-m}=\frac{1}{a^{m}}\right]$
(iii) $(125)^{\frac{1}{3}} = (5^3)^{\frac{1}{3}}$	$=\frac{1}{(5^3)^{\frac{1}{3}}}$	-
$=5^{3\times\frac{1}{3}}$ $=5^{1}=5$	$\begin{bmatrix} \left(a^{m}\right)^{n} = a^{mn} \end{bmatrix} = \frac{1}{5^{3 \times \frac{1}{3}}}$ $= \frac{1}{5}$	$\left\lfloor \left(a^{m}\right)^{n}=a^{mn}\right\rfloor$
Question 2:	5	

Question 3:

Simplify:
(i)
$$2^{\frac{2}{3}} \cdot 2^{\frac{1}{5}} \cdot (ii) = \left(\frac{1}{3^{3}}\right)^{7} \cdot (iii) = \frac{11^{\frac{1}{2}}}{11^{\frac{1}{4}}}$$

(iv) $7^{\frac{1}{2}} \cdot 8^{\frac{1}{2}}$

Answer:

(i)	
$2^{\frac{2}{3}} \cdot 2^{\frac{1}{5}} = 2^{\frac{2}{3} + \frac{1}{5}}$	$\left[a^{m}.a^{n}=a^{m+n}\right]$
$=2^{\frac{10+3}{15}}=2^{\frac{13}{15}}$	

(ii)

$\left(\frac{1}{3^3}\right)^7 = \frac{1}{3^{3\times7}}$	$\left[\left(a^{m}\right)^{n}=a^{mn}\right]$
$=\frac{1}{3^{21}}$	
$=3^{-21}$	$\left[\frac{1}{a^m}=a^{-m}\right]$

(iii)

 $\frac{11^{\frac{1}{2}}}{11^{\frac{1}{4}}} = 11^{\frac{1}{2}-\frac{1}{4}}$ $\left[\frac{a^m}{a^n} = a^{m-n}\right]$ $=11^{\frac{2-1}{4}}=11^{\frac{1}{4}}$

(iv)

1 1 1	
$7^{2}.8^{2} = (7 \times 8)^{\frac{1}{2}}$	$[a^m.b^m=(ab)^m]$
$=(56)^{\frac{1}{2}}$	